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SUMMARY

In this paper the boundary element method is applied to solve transient non-linear free surface flow problems
formulated from potential theory. For the temporal evolution a high-order time-stepping procedure based on a
truncated forward-time Taylor series expansion is compared with the classical Runge–Kutta technique. The
numerical code for both two-dimensional and axisymmetric configurations has been successfully implemented.
Emphasis in the paper is placed on describing the analytical development achieved by the use of Maple software.
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1. INTRODUCTION

Free surface flows occur in a wide variety of physical phenomena: jets, drops, bubbles and cavities
and gravity waves, to name just a few. All share the common feature that the domain of interest has
an unknown free boundary on which a double condition has to be imposed. These types of flows are
represented mathematically as non-linear initial boundary value problems. Analytical and numerical
solutions have been difficult to achieve for several reasons: first, because the boundary conditions on
the free surface involve quadratic functions of the velocity; second, because they are applied on a
surface whose position varies with time and must be found as a part of the solutions. Analytical
solutions are restricted to simple geometries and linear interface dynamics. Thus numerical solutions
are necessary to treat these problems in their full generality. Furthermore, because of the non-linear
terms, accurate numerical methods involving interface-tracking schemes are required to follow the
free surface evolutions. Fortunately, the continuing development of high-speed digital computers has
enabled us to reach these objectives. Among the various numerical techniques, the boundary element
method (BEM) has proved, by its efficiency and accuracy, to be particularly well suited to problems
in potential theory. The success of the integral equation formulation for treating transient non-linear
problems has already been well demonstrated by Longuet-Higgins and Cokelet1 and others. With this
technique, information known on the free surface alone is used to determine its motion, thus
decreasing the dimension of the problem by one. In comparison with finite element or finite
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difference methods, the major advantage of the BEM is the avoidance of regridding of the flow
region; this allows a substantial gain in computational efficiency. In other words, the development of
the BEM has overcome all the difficulties encountered before with grid methods which, because of
the existence of a deformable moving interface, require the time-consuming generation of a new grid
over the whole computational domain at each time step. All these grid techniques are expensive and
limited in their ability to resolve curved interfaces; thus they are not usually suitable for transient free
boundary problems.

In the present study a numerical procedure is developed for the analysis of unsteady free interface
flow problems which are formulated mathematically on the basis of potential theory. A computational
model for both two-dimensional and axisymmetric flow configurations is implemented in which a
high-order BEM is coupled with a high-order explicit time-stepping technique for the temporal
evolution. We focus mainly on one of these aspects: the time integration part. Our main objective is
the comparison of two methods of time integration: Taylor series expansions following the approach
of Dold and Peregrine2,3 and the classical Runge–Kutta method. We are especially interested in the
precision of the methods, their computational efficiency, their suitability for solving transient free
surface problems by the BEM and the feasibility of implementing them via a computer language. To
enable this comparison, several transient hydrodynamic phenomena involving non-linear free surface
effects have been studied in detail, namely gravitational flows for shallow water waves, drop
oscillations and liquid jet vibrations under capillary and gravity effects.

The paper is organized as follows. In Section 2 we introduce the mathematical formulation of free
surface problems in potential theory. First the boundary value problem is briefly outlined. Next, and
this is the major aim of the present work, a time integration method based on Taylor series expansion
is described. Then Section 3 examines the analytical development needed for the evaluation of the
Taylor series terms. Section 4 is devoted to the numerical implementation of this approach. In Section
5 the performance of our computational code is illustrated by applying it to large- and small-scale test
examples including two-dimensional and axisymmetric configurations. Comparison with a Runge–
Kutta time integration technique is discussed in Section 6.

2. MATHEMATICAL FORMULATION

2.1. Governing equations and boundary conditions

We consider the irrotational flow of an incompressible, inviscid fluid with a free surface. The flow
can be described by a scalar potentialj, so that the velocity fieldv� (u, w) is given by

v �

~Hj: �1�

Thus the continuity equation in the fluid domainO(t) with the boundaryG(t) (see Figure 1) becomes a
Laplace equation forj:

H
2j � 0 in O�t�: �2�

On the free surfaceGf (t) there are two boundary conditions. In the first we assume that the
interface is a material surface, so that the potentialj satisfies the kinematic boundary condition
corresponding to a Lagrangian description of the free surface particles:

Dr
Dt

�

@

@t
� v?

~H

� �

r � ~Hj on Gf �t�; �3�
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wherer defines the position vector of a free surface fluid particle and D=Dt represents the material
derivative following a fluid particle. The second boundary condition on the free surface is dynamic
and is derived from Bernoulli’s equation combined with the normal momentum balance:

Dj
Dt

�

1
2 j
~Hjj2 �

2s
r

Cm � c�r� on Gf �t�; �4�

wheres is the surface tension,r is the specific mass of the fluid,Cm is the average curvature of the
interface andc(r ) defines the potential energy per unit mass associated with the body force field.

Over a rigid and impermeable boundaryGr(t) the normal velocity is continuous and is equal to zero
for a fixed boundary:

~Hj ? ~n �
@j

@n
� 0 on Gr�t�; �5�

~n being the unit outward normal vector held by then- axis. This condition can of course be
generalized to moving boundaries.

2.2. Boundary element method

The boundary value problem described by equations (2)–(5) can be transformed, by applying
Green’s second identity to the velocity potentialj (for details see e.g. References 4 and 5), into the
following boundary integral equation

a�r�j�r� �
�

r02G�t�

@j

@n0
G�r; r0� ÿ j

@G

@n0
�r; r0�

� �

dr0; �6�

whereG, the Green function for equation (2), is given by

G�r; r0� �
1

2p
log

1
jr ÿ r0j

� �

in two dimensions; �7�

G�r; r0� �
1

4p
1

jr ÿ r0j
in three dimensions; �8�

the coefficienta(r ) is defined by

a�r� �

0 if r 62 O�t� [ G�t�;

A if r 2 G�t�;

2p if r 2 O�t� in two dimensions;

4p if r 2 O�t� in three dimensions;

8

>

>

>

<

>

>

>

:

�9�

Figure 1. Definition sketch: computational domain, co-ordinates and free surface angle
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r 0 is the integration point on the surfaceG(t), r is the control point,A is equal to the interior angle
between the tangentsG(t) at pointr and@=@n0 denotes the derivative in the direction of the outward
normal toG(t) at point r 0. For axisymmetric flow, equation (6) can be integrated in the azimuthal
direction analytically to give

G�r; z; r0; z0� �
ÿ1
4p

4rK�m�
��

�

p

�r � r0�2 � �z ÿ z0�2�
;

@

@n0
G�r; z; r0; z0� �

cos b

2p
��

�

p

�r � r0�2 � �z ÿ z0�2�
K�m� ÿ 1 � 2r

�r ÿ r0� � �z ÿ z0� tan b

�r ÿ r0�2 � �z ÿ z0�2

� �

E�m�

� �

;

�10�

whereK(m) and E(m) are complete elliptic integrals of the first and second kinds respectively6 of
modulus

m �

4rr0

�r � r0�2 � �z ÿ z0�2
: �11�

First, equation (6) is written on the part of the boundary with a Neumann condition (i.e. the rigid
boundary); when associated with (5), it leads to a Fredholm integral equation of the second kind.
Next, equation (6) is differentiated with respect to the normaln at point r ; the resultant equation is
then written on the part of the boundary with a Dirichlet condition (i.e. the free surface), leading to
another Fredholm integral equation of the second kind. To perform the integrations involved in these
equations, the boundary is discretized into elements over which interpolation functions are applied
for both the geometry and the primary variable. Within each element the geometry is defined by a
couple of parametrized cubic spline interpolations and the field functions are described by cubic
Hermite polynomial approximation.

In these integral equations, when the pointsr andr 0 do not coincide, the regular integrals over each
segment are carried out numerically using Gaussian quadrature with the total number of required
points (ranging from four to twenty-four) determined as a function of the distance between the source
point and the element under consideration. However, whenr coincides with one of the two extreme
nodes defining an element, the calculation requires a separate procedure owing to the singular nature
of the integrand. This last calculation is done by the technique of subtraction of the singularity: after
an investigation of the asymptotic behaviour of these kernels near the singlular point, we proceed
with an analytical evaluation of the integral on the singular element. For more details about the BEM
see e.g. References 7 and 8.

2.3. Time-stepping method

The free surface boundary conditions (3) and (4) must be integrated forward in time to establish
both the new position and the potential value on the interface. Thus the following initial value
problem must be solved:

Dx
Dt

�

@j

@x
;

DZ
Dt

�

@j

@y
;

Dj
Dt

�

1
2 j
~Hjj2 �

2s
r

Cm � c�x; Z�; �12�

where (x, Z) defines the co-ordinates of a fluid particle on the free surface.
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Following the original approach used by Dold and Peregrine,2,3 the updating ofGf(t) is based on a
truncated Taylor series expansion in a Lagrangian formulation which traces the fluid particle
movements on the interface (Figure 2):

r�t � Dt� � r�t� � Dt
Dr
Dt

�

�Dt�2

2!

D2r
Dt2

� � � � �

�Dt�n

n!

Dnr
Dtn

� O��Dt�n�1
�; �13�

j�t � Dt� � j�t� � Dt
Dj
Dt

�

�Dt�2

2!

D2j

Dt2
� � � � �

�Dt�n

n!

Dnj

Dtn
� O��Dt�n�1

�; �14�

where the successive Lagrangian derivates are evaluated for the same timet and the fluid particles are
moved with the local velocity vector. If each term of these Taylor series is evaluated, the new
position of the interface and the associated velocity potential can be found. In the next section this
method will be examined in detail. The analytical development needed for the evaluation of the
successive terms of these Taylor series will be described.

3. ANALYTICAL DEVELOPMENTS

3.1. Differential geometry background

We assume a fixed reference frame (x, y) with the x-axis horizontal and they-axis positive
upwards. Let (G) define in thex–y plane a curve parametrized by the arc lengths. At a given point
r (s)�M on (G) we define a local Cartesian set generated by the direct orthonormal basis (~t; ~n), where
~t and ~n are respectively the tangent and normal unit vector on (G) at point M (see Figure 3). The
covariant derivatives of~t and~n on (G) give

d~t
ds

� k1~n;
d~n
ds

� ÿk1~t; �15�

wherek1 defines the local curvature of (G). If we defineb(s) as the inclination of the curve (G) from
the horizontal direction, we have evidently

k1 �
@b

@s
: �16�

It is important to emphasize that there are two curvatures in the axisymmetric configuration. This case
is examined in Appendix I.

Figure 2. Movement of a fluid particle on the free surface
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The principal advantage of this local tangent set is that it allows the evaluation of the derivatives,
of any order, of any function parametrized by the arc lengths along (G). For the normal derivatives
we denote byn the rectilinear normal axis as a support for~n.

Furthermore, for the material derivative we can separate the advection by the local normal
component of velocity from that by the tangential component:

D:

Dt
�

@:

@t
� v~H: �

@:

@t
�

@j

@n

@:

@n
|������{z������}

+

�

@j

@s

@:

@s

Dn:

Dt

�17�

This form is more useful when following a moving fluid particle (with the local velocityv) attached
to the interface. Thus we have to calculate separately the two components described above. We also
point out that if the former necessitates some differential geometry tools, the latter is obtained
directly from a numerical differentiation along the arc lengths.

We get for the normal transport (for details see e.g. References 9 and 10) of the unit vectors~t and~n

Dn

Dt
�~t� �

@

@s

@j

@n

� �

~n;
Dn

Dt
�~n� � ÿ

@

@s

@j

@n

� �

~t �18�

and also in an equivalent way
Dn

Dt
�b� �

@

@s

@j

@n

� �

: �19�

For the curvature terms we have
Dn

Dt
�k1� �

@

2

@s2

@j

@n

� �

� k2
1
@j

@n
; �20�

which is obtained from (19) by using Appendix III fork1 � @b=@s.

3.2. Evaluation of successive terms in Taylor series

Now our attention is focused on the evaluation of the Lagrangian time derivatives ofx, Z andj.

3.2.1. First-order Lagrangian derivaties.In the first stage of the computation we solve the
boundary value problem

H
2j � 0 in O�t�; j � jd on Gf �t�;

@j

@n
� 0 on Gr�t�; �21�

where the specified potential valuejd is computed at the previous time step. The BEM is used to
solve this Laplace problem. Note that the normal velocity component@j=@n on the free surface is

Figure 3. Definition of a local co-ordinate set on curve (G)
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obtained from the solution of the boundary integral equation (6), but the tangential one@j=@s is
calculated directly by numerical differentiation since the potential values are already known along the
interface. Furthermore, thex- andy-components of the velocity vector are related to the tangential
and normal derivatives of the potential by

u �

@j

@x
�

@j

@s
cos bÿ

@j

@n
sin b; w �

@j

@y
�

@j

@s
sin b�

@j

@n
cos b: �22�

Then Dx=Dt and DZ=Dt are evaluated by

Dx

Dt
�

@j

@s
cos bÿ

@j

@n
sin b on Gf �t�;

DZ

Dt
�

@j

@s
sin b�

@j

@n
cos b on Gf �t�: �23�

Dj=Dt is calculated using the dynamic free surface boundary condition (4):

Dj
Dt

�

1
2

@j2

@s
�

@j2

@n

� �

�

2s
r

Cm � c�x; Z� on Gf �t�: �24�

3.2.2. Generalization to higher-order Lagrangian derivatives.The decomposition following (17)
for a material derivative enables an evaluation of successive terms in the Taylor series expansion. The
progression from orderk to orderk� 1 of Lagrangian derivatives is achieved in distinct stages. At
first, each term in thekth-order Lagrangian derivative is differentiated with respect to time according
to (17); to this end we use the formulations of lower-order derivatives in addition to the transport of
normal and tangential derivatives as detailed in Appendices II and III. Next, direct numerical
differentiation along the arc length is performed. Nevertheless, it is worthwhile to emphasize that if
the first two order of Lagrangian derivatives can be evaluated easily, the evaluation of higher orders
becomes intrincate and very lengthy. In fact, the number of intervening terms increases rapidly as
shown later in Table I. Fortunately, the Maple software for symbolic computations can be used for
any order.

For example, the second-order Lagrangian derivatives ofx and Z in a two-dimensional flow
configuration11 have analytical representations given by

D2x

Dt2
�

@jt

@s
�

@j

@s

@

2j

@s2
�

@j

@n

@

@s

@j

@n

� �� �

cos b� ÿ

@jt

@n
�

@j

@n

@

2j

@s2
ÿ

@j

@s

@

@s

@j

@n

� �

ÿ k1j
~Hjj2

� �

sinb;

�25�

D2Z

Dt2
�

@jt

@s
�

@j

@s

@

2j

@s2
�

@j

@n

@

@s

@j

@n

� �� �

sin b�
@jt

@n
ÿ

@j

@n

@

2j

@s2
�

@j

@s

@

@s

@j

@n

� �

� k1j
~Hjj2

� �

cos b: �26�

The corresponding terms for the axisymmetric case are outlined in Appendix I. The second-order
Lagrangian derivative ofj is evaluated with

D2j

Dt2
�

Dx
Dt

D2x

Dt2
�

DZ
Dt

D2Z

Dt2
�

2s
r

DCm

Dt
�

Dc�x; Z�
Dt

; �27�

which is obtained by differentiating the dynamic boundary condition (4) with respect to time.
After the first time derivative problem (21) is solved, the Eulerian time derivative of the velocity

potential,jt � @j=@t, becomes a known quantity on the interface. However, its normal derivative
@jt=@n is still needed to calculate the second-order Lagrangian derivatives. By differentiating the
Laplace equation (2) with respect to time, it can easily be found thatjt satisfies the Laplace equation
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too.2,12 Thus the integral equation (6) forj also governsjt. Then we have to solve the boundary
value problem

H
2jt � 0 in O�t�; jt �

Dj
Dt

ÿ

@j

@n

� �2

�

@j

@s

� �2
" #

on Gf �t�;
@jt

@n
� 0 on Gr�t�

�28�

in order to obtain@jt=@n on the free surface.
At third order the number of terms in the Lagrangian derivatives D3x=Dt3 and D3Z=Dt3 is greatly

increased. Moreover, the second-order Eulerian time derivative of the potential appears in these
expressions. As a consequence, a new Laplace problem relative tojtt � @

2j=@t2 has to be solved.
Thus, to get the coefficients of the Taylor series expansion, we solve a succession of Laplace
problems for the velocity potentialj and its Eulerian time derivatives, each solution providing the
non-linear free surface boundary conditions of the next one. Indeed, the Laplace equation (2) is valid
for all the time derivatives ofj.

Henceforth the time-stepping procedure following truncated Taylor series expansion will be
abbreviated by TSE. In Table I the numbers of intervening terms in the Dirichlet boundary condition
imposed on the interface and also in the Lagrangian derivatives ofx, Z andj are summarized for the
successive scheme orders.

4. NUMERICAL IMPLEMENTATION

4.1. Time integration procedure

In time-dependent non-linear free surface problems a boundary integral problem is solved at each
time step. Since most of the computation time is devoted to that boundary integral problem, an
effective solution method is critical in the time-stepping procedure.

As mentioned in the previous section, the boundary value problems ofj and its Eulerian time
derivatives are solved by the boundary element method. This formulation starts from the integral
equation (6) as we have seen in Section 2.2. To be solved, the boundary of the computational domain
is described by a number of nodal points. On each element the boundary geometry is approximated
by cubic splines and the field functions are represented by cubic Hermite polynomial approximation

Table I. Summary of time integration technique using truncated Taylor series expansion (TSE).
(Bernoulli equation with both capillary and gravity forces)

Two-dimensional Axisymmetric

TSE Dirichlet Dirichlet
scheme Laplace boundary boundary
order problem condition condition

k in O(t) on Gf(t)

Dkx

Dtk
or

DkZ

Dtk

Dkj

Dtk on Gf(t)

Dkx

Dtk
or

DkZ

Dtk

Dkj

Dtk

1 H
2j�0 jd: known

value
2 terms 4 terms jd: known

value
3 terms 5 terms

2 H
2jt � 0 jt: transient 8 terms 10 termsjt: transient 10 terms 13 terms

Bernoulli Bernoulli
equation equation
4 terms 5 terms

3 H
2jtt�0 jtt: 9 termsa 38 terms 44 terms jtt: 11 terms 57 terms 85 terms

4 H
2jttt�0 jttt: 41 terms 143 terms 177 termsjttt: 44 terms 251 terms 408 terms

a The analytical formulation is given in Appendix IV.
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(refer to Appendix V). Thus the integral equations are reduced to a set of linear algebraic equations
with the unknown variables@F=@n on the free surface andF (F is eitherj, jt or a higher-order
Eulerian time derivative ofj) on the remaining part of the boundary. This set is solved by the LU
decomposition method.

Provided that we know the initial conditions at a given time, i.e. the domainO(t) and the solutions
of the above-mentioned Laplace problems, we can update the free surface position and the velocity
potential to the next time step. A first Laplace problem is defined forj and @j=@n. Its solution
provides the boundary conditions for a second Laplace problem forjt and@jt=@n and so on for all
the successive derivatives. All these problems are expressed in the same domain geometryO(t). Thus
several sets of equations have to be solved per time step. However, since they are formulated at the
same time instant and for the same free surface profile, they have the same influence coefficient
matrix. Therefore, once the integrals over each element are carried out and the coefficient matrix is
decomposed into a lower and an upper triangular matrix, only forward and backward substitutions
have to be done to obtain the individual solutions of the equations. In other words, numerical
integrations only have to be performed once, making the method very efficient.

In the present case the computation time is dominated by that required to calculate the influence
coefficients associated with the BEM, so that the explicit high-order Taylor series expansion, which
maintains the same matrix coefficient during one complete time step, represents a substantial saving
in CPU time when compared with Runge–Kutta integration. Indeed, the former requires information
only at the beginning of the time step, whereas the latter requires information at several intermediate
instants betweent and t�Dt. As a result, for every time stepDt we have to resolve several Laplace
problems in different geometries. Thus, with a Runge–Kutta scheme of orderk, k evaluations of the
integral equations are required at each iteration and that can be extremely time-consuming.

Consequently, since most of the computing time in the BEM is spent on the calculation of the
integral equations for a given geometry, it is important to minimize the amount of computational
effort needed to get the desired accuracy. The explicit Taylor series expansion technique thus seems
particularly suitable for transient free surface problems resolved by the BEM.13,14

4.2. Stability analysis

To determine an appropriate time step size for the temporal evolution, a stability analysis with a
linearized form of the free surface condition (4) has been performed. In the case of transient free
surface problems solved by the BEM, we examine the theory of surface waves in an ideal liquid
where there is no energy dissipation due to viscosity. We assume that the wave is induced either by
surface tension or by gravity forces. We analyse situations where the wavelength is small in
comparison with the depth of the liquid and the wave amplitude is small compared with the
wavelength. Thus, with these assumptions, all the non-linear terms can be neglected. Since only
surface waves are examined, the motion is confined to a region which is shallow in comparison with
the depth of the liquid. Selecting the upward direction of they-axis as positive, the liquid occupies the
half-spacey< 0 and the velocities of the fluid must vanish at infinity:j! 0 asy! 7?. Let l be
the wavelength,a the wave amplitude ando the frequency. The velocity potential of these waves is

j�x; y; t� � a cos�kx� exp�ky� sin�ot� �29�

and the wave profile on the surface of the liquid is

Z�x; t� � ÿ

ka

o
cos�kx� cos�ot�; �30�

wherek is the wave number.
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The hydrodynamic equation associated with these assumptions and the boundary conditions leads
to the dispersion relation15

o2
�

8p3s

rl3 �

2pg

l
: �31�

The frequencyo, according to this formula, decreases asl increases and depends on both the gravity
g and the capillary constants. For long waves the main effect is caused by gravitation and the
frequency depends chiefly on the termg=l. In contrast, for short waves, surface tension plays the
major role in the wave propagation.

In our computational implementation the smallest wavelengthl which can be excited on the free
surface is equal to the double the local grid spacingDs. This assumption leads to the following
stability criteria relating the time stepDt to the grid meshDs:

Dt2 4w�k� � Ds in the gravity case; Dt2 4g�k� � Ds3 in the capillary case; �32�

wherew(k) andg(k) are two constants that depend on the time integration scheme orderk.
Note that these criteria have been obtained assuming that the amplitude of the excited mode at the

end of the first time step is not larger than its amplitude at the beginning. The physics has led us to
this assumption. A preferable way would be to formulate the stability problems in terms of matrices.
In this manner we observe that our explicit schemes are never stable, except for the fourth-order
Runge–Kutta scheme. However, semi- implicit schemes are stable and lead to criteria analogous to
(32). This analysis will be the aim of another paper. It suffices to mention here that the comparison
between TSE and RK schemes can be made for relatively short times before the development of
instabilities.

4.3. Checks of computational accuracy

Generally, two types of errors are introduced in the numerical solution of a problem. These errors
and round-off error, which is a property of the computer, and discretization error, which is dependent
upon the particular numerical method. Understanding and controlling these errors is essential in order
to get a successful solution. The overall accuracy of our computations depends on the two numerical
processes that we distinguished before, i.e. the solution of the Laplace problems at a given time,
which requires the use of a spatial discretization, and the time integration, which requires a temporal
one. Both the field equation solver and the time-stepping procedure can be checked independently.
We will just mention the fact that adding a large number of terms together (refer to Table I) may lead
to precision loss. Unfortunately, this rounding error is impossible to evaluate, except with the use of
specific software.16 We did not have the opportunity to do such a validation, but we reserve it for a
future work.

4.3.1. Error due to spatial discretization.The boundary geometry of the computational domain is
approximated by cubic splines and the field functions are described by Hermite polynomial
approximation of third order. In this case the results of our numerical experiments indicate that the
convergence with the grid size is cubic, so we define the error associated with the BEM solver as

eBEM � O�Ds3
�: �33�

The error (33) has been obtained from numerical tests on both Dirichlet and Neumann problems of
either two-dimensional or axisymmetric flows for which analytical solutions for the velocity potential
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~j are available. Using the Euclidian norm, the relative error associated with the BEM solver is
defined by

eBEM �

jjÿ ~jj

j ~jj
: �34�

4.3.2. Error due to time integration.Since there are no analytical solutions available for most non-
linear free boundary problems, the accuracy of the numerical results is examined by checking the
mass and energy conservation laws of the fluid. Thus a global check of the time-stepping accuracy is
provided by the following two relative errors defined for each time: the volume errorev(t) relative to
the initial volumeV i of the domainO(t),

ev�t� �
jV �t� ÿ V i

j

V i
; �35�

and the total energy erroree(t) relative to the initial total energyEi,

ee�t� �
jE�t� ÿ Ei

j

Ei
; �36�

where the total energyE is computed as the sum of the kinetic energyEk and potential energyEp. For
all the examples in the next section such quantities are typically conserved to within a few per cent
(e.g. see Figure 10).

4.4. Derivation of a consistent formulation

The overall accuracy of a numerical scheme is considered in two parts: that associated with the
field equation (6) and that associated with the integration of the evolution equations (12). To get the
same rate of convergence with respect to temporal and spatial discretization, the approximations for
both the boundary geometry and the field functions in the BEM solver must be appropriate to the
scheme order of the time integration procedure. Our procedure is performed using cubic spline
interpolation along the boundary for the geometry and cubic Hermite polynomial approximation for
the field functions as detailed in Appendix V.

Let m be the order of error in the BEM such thatm� 2 for linear variation (C0 basis function) and
m� 3 for cubic variation (C1 basis function) and letO(Dsm) define the error associated with the BEM
solver.

For example, in the case of a second-order TSE scheme the first differential equation used to
update the interface position gives

x�t � Dt� � x�t� � Dt
Dx
Dt

�

�Dt�2

2!

D2x

Dt2
� O��Dt�3�: �37�

In this expression the first-order Lagrangian derivative Dx=Dt is related to the normal and tangential
velocity components by equation (23), whereas in the second-order derivative D2x=Dt2 there are
several more terms, among them@jt=@n which results from two consecutive Laplace problems
(H2j� 0 then H2jt� 0) on the same geometric domain. The former induces an errorO(Dsm)
associated with the BEM solver, while the latter induces the same error multiplied by the matrix
coefficient condition number, i.e.O(Dsm) �CN(M).

HIGH-ORDER BEM SCHEMES FOR FREE SURFACE PROBLEMS 1059

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 1049–1072 (1997)



Thus on the right-hand side of (37) the first-order derivative prevails over the following ones.
Therefore we can write in a consistent manner, to get effectively a second-order time integration
method,

Dt�O�Dsm
� � O�Dt3

�: �38�

Furthermore, a linear stability analysis (detailed previously in Section 4.2) has led to the criteria

Ds � �Dt�2 in the gravity case; �Ds�3 � �Dt�2 in the capillary case:

Introducing these relations in (38) shows thatm must be equal to or greater than one in the gravity
case and equal to three or more for the capillary case. This result implies that for problems involving
only gravitational effects a BEM with a constant approximation will be enough for the second-order
time-marching scheme, whereas a cubic one is necessary in problems with capillary effects.

The constraint on the BEM solver combined with higher-order TSE is presented in Table II, where
we have summarized the deductions obtained from the same reasoning as presented immediately
above. We can note from these results the high-order approximation needed for a consistent BEM
coupled with a fourth-order TSE in the numerical solution of problems involving capillary effects;
this is the reason why we have not examined this case in our computation.

5. APPLICATIONS

The numerical model outlined in the previous sections was implemented in a computer code and has
been applied to a wide variety of transient free surface problems including two-dimensional and
axisymmetric flows. In these test examples, depending on the application, the surface tension effects
were either predominant or sufficiently weak so that they could be neglected. For each case,
computed results using different techniques of time integration have been compared with one
another. Precision and computing time requirement were the criteria examined. Numerical tests with
several different time steps and mesh sizes have been performed.

For the test cases presented in this section, all the computations have been carried out on a
HP=9000 Mod. 715 workstation equipped with 32 MB of RAM with peak performance equal to
50 Mips.

5.1. Axisymmetric flow configurations

5.1.1. Oscillations of a spherical globule in zero gravity.In this application we present a study of
slightly non-linear oscillations of spherical liquid drops in the absence of a surrounding fluid. When
gravity is negligible, the drops formed in the break-up of a liquid jet undergo capillary oscillations
about a spherical shape. In the present study the boundary integral method is applied to the axially
symmetric motion of a liquid drop in zero gravity and in dynamically inactive surroundings such as a

Table II. Constraint on BEM solver combined with higher-order TSE

Case Second-order TSE Fourth-order TSE

Gravity BEM solver with BEM solver with
first-order approximation linear approximation
is necessary: is necessary:
eBEM�O(Ds) eBEM�O(Ds2)

Capillary BEM solver with BEM solver with
cubic approximation sixth-order approximation
is necessary: is necessary:
eBEM�O(Ds3) eBEM�O(Ds6)
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vacuum or low-density gas. A uniform pressure distribution is assumed on the drop surface. Surface
tension constitutes the only forcing term. The symmetry of the problem suggests the use of a
spherical co-ordinate system (R, y, f) with the origin placed at the centre of the drop.

There is no large-amplitude theory of globule oscillations. For vibrations of the drop surface which
are small compared with its radius, it is well known17 that the axially symmetric form of the
linearized solution is the superposition of modes of the form

R�y� � Rm � enPn�cos y� cos�ont � an� �39�

for the surface shape and

j�y� � ÿ

onRm

n

R

Rm

�n

enPn�cos y� sin�ont � an�

�

�40�

for the velocity potential inside the drop, whereRm is the main radius of the globule,en is the
amplitude of thenth mode andPn�cos y� is the Legendre polynomial of ordern with y the polar angle.
The frequencieson are given by

o2
n �

n�n ÿ 1��n � 2�s
rR2

m
; �41�

wheres is the surface tension andr is the density of the internal fluid. The problem has been non-
dimensionalized by taking the radiusRm and the surface tensions as characteristic scales. We limit
this test calculation to the numerical study of the second mode with the impulsive initial condition on
the drop surface

R � Rm � 1 and j � j2P2�cos y� at t � 0; �42�

which can be thought of as applying an impulsive pressure at the initial time. Calculations have been
done with an amplitudej2� 0�2. An estimation of the global accuracy has been made by checking
the conservation of the sum of the kinetic energy, computed from the classical formula

Ek �
r

2

�

G

j
@j

@n
dG; �43�

and the potential energy, reduced here to the surface energy

Ep �

�

Gf

sdG: �44�

The intersection of a meridian plane with the drop surface is described byN equidistant nodes (Figure
4). For each value taken byN, the time stepDt is related to the grid meshDs by a relation obtained
from an analysis of the linear stability of the capillary waves as described previously in Section 4.2.

5.1.2. Droplet oscillations in a gravitational field.In this example, surface tension effects are not
taken into account and gravity is assumed to be the single driving force. The oscillations of the drop
take place in a gravitational field defined as

c � ÿgR: �45�

The gravitational potential energy per unit mass is

Ep � rg

�

Gf

1
4 R2

~n � iR
!

dG; �46�
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where iR
!

denotes the unit vector in the radial direction. All the quantities used in the present
computations are non- dimensionalized with the acceleration due to gravity and the initial radiusRm.

As in the first example test, the numerical study is limited to the second mode of oscillations.
Figure 5 shows the drop surface profiles produced by simple oscillatory movement (of amplitude
j2� 0�2) about its spherical shape.

5.2. Two-dimensional flow configuration

5.2.1. Liquid jet vibrations induced by capillary action.This application is concerned with the
oscillations of a jet of circular cross-section. An inviscid liquid emanating from a circular nozzle in a
surrounding medium of negligible density forms a cylindrical jet of mean radiusRm. When it remains
unbroken, the jet interface is subjected to an arbitrarily small vibration due to the action of capillary
forces. The jet cross-section, in the case of symmetrical waves, remains circular and either contracts
or expands. Let us consider the oscillations of a jet cross- section about a circular shape and limit our

Figure 4. Axially symmetric co-ordinate system (planef� const.)

Figure 5. Profiles showing evolution of drop’s shape for different time instants (Ds� 0�0785 andDt�0�0638):
– �– � , initial shape; ————, profiles at every three time steps
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test to the second mode. A polar co-ordinate system (R, y) is fixed so that the origin lies at the centre
of the cylinder. The jet cross-section is described byN equidistant nodes (Figure 6). In Figure 7 the
evolution of a jet cross-section is displayed for the case where the vibrations have an amplitude
j2� 0�4.

5.2.2. Propagating solitary wave.This application is devoted to gravitational solitary wave
propagation in a two-dimensional canal. The wave is initially set moving to the right as shown in
Figure 8 and the surface profiles are followed in time.

The solitary wave is an approximate analytical solution in which weakly non- linear effects
balance dispersive effects so that the wave maintains its original shape as it moves.18 Figure 8 shows
the computational domain for the test problem. Using the fluid depthh and the velocity

���������

�gh�
p

as the
reference length and velocity respectively to obtain dimensionless variables, the solitary wave is
generated by establishing the following initial conditions on the free surface:

j�x; t � 0� �
u0

k
tanh�k�x ÿ ct�� and Z�x; t � 0� � u�c ÿ 1

2 u� on Gf �t�; �47�

Figure 6. Discretization of jet cross-section

Figure 7. Successive profiles of jet cross-section for different time instants (Ds�0�106 andDt� 0�0125):
– �– � , initial shape; ————, profiles at every 10 time steps
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where the horizontal velocity field is given by

u�x; t� � u0 sech2
�k�x ÿ ct��; �48�

with c � �

p

1 � a� the wave speed,k �

���������

�3a�
p

=2 the wave number andu0 � c ÿ
������������������

�c2
ÿ 2a�

p

the
velocity of the crest. The foregoing corresponds to a first-order analytical solution.

In the present flow configuration the potential energy per unit mass is reduced to the gravitational
energy

Ep �
rg

2

�

Gf

z2dG: �49�

For a computational region equal to 20 times the water depth the boundary is first discretized into
cubic elements with a total of 40 nodes, of which 16 are placed on the free surface. Next, new mesh
sizes are considered; each one is obtained from a reduction of the previous one by half. Figure 9
shows the computed free surface at different times as a solitary wave of amplitudea� 0�3
propagates.

Figure 8. Flow domain for non-linear solitary wave

Figure 9. Free surface profiles of a solitary wave moving towards a vertical wall modelled atx�10, with Ds�0�25 and
Dt� 0�56: –�– � , initial free surface position; ————, profiles at every two time steps
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6. COMPUTATIONAL RESULTS

The results of numerical computations are illustrated in Figures 10 and 11, where time integration
with truncated Taylor expansion (TSE) is compared with the Runge–Kutta (RK) technique. The
purpose is to demonstrate the degree of accuracy of each approach. Indeed, our main goal is to know
definitively, a precision being preselected, which time integration method is the most economic in
terms of CPU time.

CPU consumption depends on several factors such as the number of numerical points employed,
the duration of the run and the number of intermediate time steps. Thus at first it is worthwhile to
emphasize that all the computations have been limited to short transient simulations in order to avoid
the use of regridding routines.19,20 For each application we have carried out different calculations
with their respective CPU consumption and maximum error on the total energy,ee. A coarse mesh
size is used first; then the grid spacing is refined progressively and in the same way the time step size
is reduced. This of course causes the erroree to decrease. We note that the value ofev, the error on the
volume, is less than 10ÿ4 in all the computations. Thusev is always smaller thanee.

The basic difference between TSE and RK schemes of the same order is the number of
intermediate time steps. In fact, inspection of Figure 10 shows that at second order the CPU times
with RK are about twice those with TSE. Indeed, this is as expected, since with the second-order RK
scheme we have to solve two Laplace problems in different geometries. However, because most of
the computing time is devoted to calculating the BEM matrix, the RK technique is more expensive
than TSE for the same precision. Likewise comparing the two approaches at fourth order (see Figure
11), TSE requires about only one-fourth of the computing time of RK. Nevertheless, it is important to
point out that the extension of TSE to higher-order schemes is not easy. In fact, we first need to build

Figure 10. Comparison of precision and CPU time consumption between TSE (– – – –) and RK (————) methods of second
order for different time steps. Meshing withN points on the free surface: (a)N� 20, 30, 40, 50; (b)N�20, 40, 60, 80; (c)

N�30, 40, 50, 60, 80; (d)N� 16, 32, 64, 128
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a procedure on Maple software to express the Lagrangian derivatives as detailed in Appendices II–IV.
However, once the resulting analytical expressions are evaluated, we must translate them, using the
Maple software, into Fortran language before incorporating them into our numerical code. This
results in a considerable effort compared with the classical fourth-order RK technique.

7. CONCLUSIONS

Throughout our numerical computations it has been found that Taylor series expansion for time
integration is particularly suitable for transient free surface problems solved by the BEM. This
approach, developed first by Dold and Peregrine,2,3 has been successfully used by several authors to
treat non-linear water wave problems.11,12,14 However, they have limited their studies to the
gravitational case without capillary effects and restricted the computations to second-order schemes
in time integration coupled with a linear approximation in the BEM solver. Since very accurate
results are sometimes required, we devoted our study to the feasibility of an extension of this
approach to higher orders. We have found that greater precision can be obtained using fourth-order
schemes. This can be reached for the gravitational case, but the situation becomes somewhat complex
when dealing with capillary waves. Furthermore, according to the capillary stability condition, an
extremely high-order BEM solver would be necessary for the numerical solution of problems
involving capillary effects.

APPENDIX I: AXISYMMETRIC FLOW CONFIGURATION

For an axisymmetric flow configuration, on each point of the revolution surface, two principal
curvatures are defined, namely a planar curvaturek1 � @b=@s and an axisymmetric curvature
k2 � �sin b�=x, wherex denotes the radial component of a cylindrical polar co-ordinate system. Thus
we denote byCm� (k1� k2)=2 the local mean curvature of the interface. For convenience in writing,
we will introduce the labelk3 for the term�cos b�=x. It is important to point out thatk3 is not a
curvature term.

Figure 11. Comparison of precision and CPU time consumption between TSE (– – – –) and RK (————) methods of fourth
order for different time steps. Meshing withN�16, 32, 64, 128 points on the free surface
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The normal transport of these terms is formulated by

Dn

Dt
�k2� � k3

@

@s

@j

@n

� �

� k2
2
@j

@n
;

Dn

Dt
�k3� � ÿk2

@

@s

@j

@n

� �

� k2k3
@j

@n
:

Their derivatives along the arc length are

@k2

@s
� k1k3 ÿ k2k3;

@k3

@s
� ÿk1k3 ÿ k2

3:

In this case the second-order Lagrangian derivatives for the position of a fluid particle located on
the interface have analytical representations given by

D2x

Dt2
�

@jt

@s
�

@j

@s

@

2j

@s2
�

@j

@n

@

@s

@j

@n

� �� �

cos b� ÿ

@jt

@n
�

@j

@n

@

2j

@s2
ÿ

@j

@s

@

@s

@j

@n

� �

ÿ k1j
~Hjj2

�

ÿ k2
@j

@n

� �2

�k3
@j

@n

@j

@s

�

sin b;

D2Z

Dt2
�

@jt

@s
�

@j

@s

@

2j

@s2
�

@j

@n

@

@s

@j

@n

� �� �

sin b�
@jt

@n
ÿ

@j

@n

@

2j

@s2
�

@j

@s

@

@s

@j

@n

� �

� k1j
~Hjj2

�

� k2
@j

@n

� �2

ÿk3
@j

@n

@j

@s

�

cos b;

which are slightly more complicated than those corresponding to the two-dimensional configuration.

APPENDIX II: TRANSPORT OF A NORMAL DERIVATIVE FOLLOWING NORMAL
VELOCITY

Let A be a scalar function dependent on time. Furthermore,A is harmonic over the fluid regionO(t).
Its gradient and Eulerian time derivatives can thus be taken at each point on the interfaceGf(t).

We start from

@

@n
�At� �

~H
@A

@t

� �

� ~n �
@

@t
~HA� � ~n:

�

However,

@

@t
�

~HA� �
Dn

Dt
�

~HA� ÿ
@j

@n
~n � ~H�~HA�:

Then

@

@t
�

~HA� � ~n �
Dn

Dt
�

~HA� � ~nÿ
@j

@n

@

2A

@n2
:

The first term on the right-hand side of the last equation can be written as

Dn

Dt
�

~HA� � ~n �
Dn

Dt
�

~HA � ~n� ÿ ~HA �

Dn~n

Dt

be it so

Dn

Dt

@A

@n

� �

�

@A

@s

@

@s

@j

@n

� �

:
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Thus we obtain

@

@n
�At� �

Dn

Dt

@A

@n

� �

�

@A

@s

@

@s

@j

@n

� �

ÿ

@j

@n

@

2A

@n2
:

The general formula which enables the advection by the local normal velocity of a normal derivative
@A=@n of a harmonic functionA is therefore expressed as

Dn

Dt

@A

@n

� �

�

@

@n
�At� ÿ

@A

@s

@

@s

@j

@n

� �

�

@j

@n

@

2A

@n2
:

At this stage we need to distinguish between two-dimensional and axisymmetric cases. Indeed, the
Laplace equation, when expressed in the local set related to the interface, has different formulations
according to the geometrical configuration. In the two-dimensional case it is written as

@

2A

@n2
� ÿ

@

2A

@s2
� k1

@A

@n

and we get the final formula

Dn

Dt

@A

@n

� �

�

@

@n
�At� ÿ

@A

@s

@

@s

@j

@n

� �

ÿ

@j

@n

@

2A

@s2
� k1

@j

@n

@A

@n
: �50�

In the axisymmetric case it gives

@

2A

@n2
� ÿ

@

2A

@s2
� �k1 � k2�

@A

@n
ÿ k3

@A

@s

and we obtain finally

Dn

Dt

@A

@n

� �

�

@

@n
�At� ÿ

@A

@s

@

@s

@j

@n

� �

ÿ

@j

@n

@

2A

@s2
� �k1 � k2�

@j

@n

@A

@n
ÿ k3

@j

@n

@A

@s
: �51�

APPENDIX III: NORMAL TRANSPORT OF A COVARIANT DERIVATIVE

Let A be a scalar function dependent on time, not necessarily harmonic, defined over the fluid region
O(t). Its gradient and Eulerian time derivatives can thus be taken at each point on the interfaceGf (t).

We start from

@

@s
�At� �

~H
@A

@t

� �

� ~t �
@

@t
�

~HA� � ~t:

However,

@

@t
�

~HA� �
Dn

Dt
�

~HA� ÿ
@j

@n
~n � ~H�~HA�:

Then

@

@t
�

~HA� � ~t �
Dn

Dt
�

~HA� � ~tÿ
@j

@n
�~n � ~H�~HA�� � ~t:

The first term on the right-hand side of the last equation can be written as

Dn

Dt
�

~HA� � ~t �
Dn

Dt
�

~HA � ~t� ÿ ~HA �

Dn~t

Dt
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be it so

Dn

Dt

@A

@s

� �

ÿ
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@s

@j

@n

� �

:

Moreover,

�~n � ~H�~HA�� � ~t �
@
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�

@A
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�

� k1
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:

We obtain then
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However,
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@s
�At� �

@

@s

DnA
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ÿ
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� �

�
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ÿ
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ÿ
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@s
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� �

:

The general formula for the advection by the local normal velocity of a covariant derivative@A=@s is
thus expressed as

Dn

Dt

@A

@s

� �

�

@

@s

DnA

Dt

� �

� k1
@j

@n

@A

@s
: �52�

We assume now that the functionA is not defined on the interface; in this case, only the component
@A=@s of its gradient has a meaning. Thus we introduceĀ as the extended function ofA over all space:

�A � A on the interface;
@

�A

@n
� 0 on the interface;

@

�A

@s
�

@A

@s
on the interface:

We also point out that this extension is not unique, but its existence is wide enough. The previous
formulae are thus applied toĀ and we can see that equation (52) is still valid ifA is defined only on
the interface.

APPENDIX IV: HIGH-ORDER DERIVATION OF DIRICHLET BOUNDARY CONDITION ON
THE INTERFACE

At first order the Dirichlet boundary condition imposed on the interfaceGf(t) corresponds to

j � jd;

where the specified potential valuejd is either computed at the previous time step or given by the
initial conditions.

At second order, furthermore, we have to resolve a Laplace problem relative tojt. For this purpose
the transient Bernoulli equation applied on the interface provides directly the boundary condition

jt � ÿ

1
2 j
~Hjj2 �

2s

r
Cm � c�x; Z� on Gf �t�:
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At higher order the analysis becomes slightly more complicated. Nevertheless, we can quickly
achieve our objective owing the Maple software. Thus, to express the Dirichlet boundary condition at
orderk� 1, we apply the following rule which makes use of a recursive calculation:

jk�1
�

@

@t
�j�k�

� �

Dn

Dt
�j�k�

�

|�����{z�����}

+

ÿ

@j

@n

@j�k�

@n
|�{z�}

+

;

recursive
calculus

solution of
H

2j�k�
� 0

wherej�k� denotes thekth-order Eulerian time derivative ofj.
For illustration, let us present the formulation ofjtt in a two-dimensional configuration and for a

gravitational potentialc�ÿgZ:

jtt �
@jt

@t
�

Dn

Dt
�jt� ÿ

@j

@n

@jt

@n
�

Dn

Dt
ÿ

1
2

@j

@n

� �2

ÿ

1
2

@j

@s

� �2

�

s

r
k1 ÿ gZ

" #

ÿ

@j

@n

@jt

@n:

If we refer to Appendices II and III, we can find the necessary tools for the formulation of the
advection by the local normal component of velocity.

Finally we obtain

jtt � ÿ

@j

@n

@jt

@n
�

@j

@n

� �2
@

2j

@s2

� �

ÿ

@j

@n

� �3

k1 ÿ
@j

@n

@

@s

@j

@n

� �

@j

@s
ÿ

@j

@s

@jt

@s
ÿ

@j

@s

� �2
@j

@n
k1

�

s

r

@

2

@s2

@j

@n

� �

�

s

r

@j

@n
k2

1 ÿ g cos b
@j

@n
; �53�

the formula which is used for the third-order scheme.

APPENDIX V: REPRESENTATION OF FIELD FUNCTIONS

To perform the integrations involved in the equations described in Section 2.2, the boundary surface
of the computational domain is described by a finite number of discrete points (nodes) and the cubic
spline is then used to define the boundary location as a continuous function. For the purpose of
integration, interpolation basis functions are then introduced to relate the variation in the primary
variables (the unknownsF or @F=@n) within each element to their values at the nodal (extreme)
points. We adopt here Hermite polynomial approximation for which the unknowns are located only at
the intersection between two elements. Linear interpolating functions (C0 shape basis functions) are
mostly used in representing the distribution of the dependent variable over the elements. These shape
basis functions are (Figure 12)

C�s� �

0 if s4 1;
o2�s ÿ 1� if 1 < s4 2;
o1�s ÿ 2� if 2 < s4 3;
0 if s > 3;

8

>

>

<

>

>

:

where

o1�s� � 1 ÿ s; o2�s� � s:

In our procedure, to enhance the accuracy of the BEM, we adopt higher-order interpolating
functions. The field functions are represented by cubic Hermite polynomial approximations which
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has continuous first derivatives between elements. Here the associatedC1 basis functions are
analytically defined over four elements and have the shape (Figure 13)

C�s� �

1
2o4�s� if 04 s4 1;
o2�s ÿ 1� � 1

2o3�s ÿ 1� if 1 < s4 2;
o1�s ÿ 2� ÿ 1

2o4�s ÿ 2� if 2 < s4 3;
ÿ

1
2o3�s ÿ 3� if 3 < s4 4;

8

>

>

<

>

>

:

where

o1�s� � �1 ÿ s�2�2s � 1�; o2�s� � s2
�3 ÿ 2s�; o3�s� � s�1 ÿ s�2; o4�s� � s2

�s ÿ 1�

and the derivative values are obtained by interpolating three successive points via a parabola. Such
basis functions can be viewed as symmetrized Riabenki functions.21 This allows the accurate
calculation of derivative dependent functions (on the boundary) such as velocity. Cubic polynomials
can also be used to construct the cubic B-splines which lead to aC2 approximation (continuous first
and second derivatives). This latter method has been successfully used by some authors (see e.g.
References 14 and 22), but we claim that our approach is simpler and easier to implement.
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